

©2007 Business Performance Inc., Adele Sommers, All Rights Reserved. www.LearnShareProsper.com
 1

This checklist may be reprinted with proper attribution.

Functional Testing & Evaluation Checklist

1. Evaluate design alternatives. Is your first design concept ideal? You will

never know without creating several prototypes, comparing their properties,

and then selecting the winning traits from the best performer(s).

2. Assess interface usability. Is your first interface design concept certain to

be the easiest one to use? To find out, invite representative users to try out

the proposed interface in the form of paper and/or electronic mockups. Use

the findings to make design improvements, and keep repeating the process.

3. Perform a difficulty analysis. Ask these types of questions about each

new version of your offering: Have you prevented all unnecessary bells and

whistles from creeping into your system? Have you automated or kept to a

bare minimum all of the tedious busywork, like installation and setup? Have

you used a “hassle hunt” to remove any other customer annoyances?

4. Conduct regular alpha tests. Alpha tests are the checks run on system

components that are still under development. Effective test practices show

that daily testing, using automated routines, is the surest way to discover

and correct defects — before they become buried and hard to find. As you

finish components, you can broaden the testing to higher levels.

5. Conduct beta testing. Later in development, beta testers with varying

degrees of system familiarity should validate it repeatedly. Does it:

 Operate in an error-free manner? You will need to test all of the

features against their requirements, with both normal and abnormal

data, alone and in combination with other features, and in both typical

and atypical sequences. Why? Customers will do many “creative” things

with your system! You can’t stop users from entering strange values or

trying funny keystroke combinations. Therefore, a system should either

prevent these actions, or respond to them elegantly.

 Support real-world goals and tasks? For example, does it guide the

users in completing each primary objective? Test the system using both

onscreen and written instructions to verify accuracy and clarity.

 Function flawlessly under sub-optimal conditions? Will the product

or service operate in a “bullet-proof” mode during off-hours, in isolated

conditions, bad weather, or remote locations? If not, it should gracefully

stop the action without doing harm and let users know what to do next.

http://LearnShareProsper.com

